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Classical problems. Matrix games and Linear Programming (LP).
Classical question. Stability:

How do our objects of interest change upon perturbations?

Observables. Solutions and value of the problems.

How do solutions and value change
upon perturbations?
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Matrix Games
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 .

valM := max
p∈∆[m]

min
q∈∆[n]

ptMq .
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Polynomial Matrix Games

M(ε) = M0 + M1ε + . . . + MKε
K .

Definition (Value-positivity problem)

Determine if ∃ε0 > 0 such that ∀ε ∈ [0, ε0]

valM(ε) ≥ valM(0) .
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Polynomial Matrix Games II

Definition (Uniform value-positivity problem)

Determine if ∃p0 ∈ ∆[m] ∃ε0 > 0 such that ∀ε ∈ [0, ε0]

∀j ∈ [m] (pt0M(ε))j ≥ valM(0) .

Definition (Functional form problem)

Return the maps

ε 7→ valM(ε)

ε 7→ p∗(ε) ,

for ε ∈ [0, ε0].

Note. They are rational functions.
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LPs with errors

An error-free LP is the following optimization problem.

(P0)


minx ct0x
s.t. A0x ≤ b0

x ≥ 0 ,

An LP with errors considers polynomials A(ε), b(ε), c(ε).

Definition (Weak robustness)

Determine if there exists ε0 > 0 such that, for all ε ∈ [0, ε0], (Pε)
is feasible and bounded.
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LPs with errors II

Definition (Strong robustness)

Determine if there exists ε0 > 0 and a vector x∗0 such that, for all
ε ∈ [0, ε0], x∗0 is also a solution of (Pε).

Definition (Functional form)

Let (Pε)ε≥0 be weakly robust. The functional form is given by

ε 7→ val(Pε)

ε 7→ x∗(ε) .

Note. They are rational functions.
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Polynomial matrix game

Consider ε > 0.

M(ε) =

(
1 −1
−1 1

)
+

(
1 −3
0 2

)
ε .

The optimal strategy is given by, for ε < 1/2,

pε =

(
1 + ε

2 + 3ε
,

1 + 2ε

2 + 3ε

)t

.

Therefore,

valM(ε) =
ε2

2 + 3ε
.
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Polynomial matrix game, negative direction

Consider ε > 0.

M(ε) =

(
1 −1
−1 1

)
+

(
−1 3
0 −2

)
ε .

The optimal strategy is given by, for ε < 1/2,

pε =

(
1 + ε

2 + 3ε
,

1 + 2ε

2 + 3ε

)t

.

Therefore,

valM(ε) =
ε2

2 + 3ε
.
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LP with errors: not weakly robust

(Pε)


minx x
s.t. x ≤ −ε

−x ≤ −ε .

It is not weakly robust, therefore not strongly robust and there is
no functional form.
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LP with errors: strongly robust

(Pε)


maxx ,y x + y
s.t. x ≤ 0

y + εx ≤ 0 .

It is weakly robust and strongly robust. Therefore, the functional
form is:

val(Pε) ≡ 0

(x , y)∗(ε) ≡ (0, 0) .
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Derivative of the value function [Mills 1956]

Define

DvalM(0+) := lim
ε→0+

valM(ε)− valM(0)

ε
.

Results.

1 Characterization of DvalM(0+).

2 (Poly-time) algorithm for computing it.

Similar results are given for LPs with errors, adding feseability and
boundedness conditions.
Observations.

1 Mills (naturally) only cares about linear perturbations.

2 This result does not solve in any way the value-positivity
problems.
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Reduction

Lemma (Reduction from LP with error to polynomial matrix
games)

There is a polynomial-time reduction from robustness problems to
the respective value-positivity problem, and it preserves the degree
of the error terms.
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Algorithms

Lemma (Poly-time algorithms)

There are certifying polynomial-time algorithms for value-positivity,
uniform value-positivity and functional form problems of
polynomial matrix games.

This extends the work of [Mills 1956].
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LP reduction

Follows the work of [Adler 2013], which finishes the work of
[Dantzig 1951]. Works for algebraic parameters.
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Poly-time for value-positivity

Based on ideas of [Oliu-Barton 2020], which reuses results of
[Shapley and Snow 1952].

Lemma

Let M be a matrix game. There exists a square submatrix Ṁ such
that 1tco(Ṁ)1 6= 0 and

valM =
det Ṁ

1tco(Ṁ)1
,

where co(Ṁ) is the co-matrix of Ṁ and 1 is the vector of ones.
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Arbitrary high degree for linear matrix games. The value
function of a linear matrix game is a rational function

valM(ε) =
R1(ε)

R2(ε)
,

where R1,R2 are polynomials of degree at most
min(#rows,#columns).
Is there a example where this inequality is sharp?

Your proposal?
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