Value-Positivity for Matrix Games

Stability in Matrix Games

K. Chatterjee¹ R. Saona¹ M. Oliu-Barton²

¹IST Austria

²CEREMADE, CNRS, Université Paris Dauphine, PSL Research Institute

Introduction	Main idea
Results	Model
Details	Examples

Classical problems. Matrix games and Linear Programming (LP). **Classical question.** Stability:

How do our objects of interest change upon perturbations?

Observables. Solutions and value of the problems.

How do solutions and value change upon perturbations?

	Introduction Results Details	Main idea <mark>Model</mark> Examples
Matrix Games		

$$egin{array}{c} j \ i & \left(m_{i,j}
ight) \end{array} egin{array}{c} & & & \ m_{i,j} \end{array} \end{pmatrix} \ .$$
val $M\coloneqq \max_{p\in\Delta[m]}\min_{q\in\Delta[n]}p^tMq$.

Introduction Results Details Main idea Model Examples

Polynomial Matrix Games

$$M(\varepsilon) = M_0 + M_1 \varepsilon + \ldots + M_K \varepsilon^K$$

Definition (Value-positivity problem)

Determine if $\exists \varepsilon_0 > 0$ such that $\forall \varepsilon \in [0, \varepsilon_0]$

 $\operatorname{val} M(\varepsilon) \ge \operatorname{val} M(0)$.

Introduction Main idea Results Model Details Examples

Polynomial Matrix Games II

Definition (Uniform value-positivity problem)

Determine if $\exists p_0 \in \Delta[m] \quad \exists \varepsilon_0 > 0 \text{ such that } \forall \varepsilon \in [0, \varepsilon_0]$

 $\forall j \in [m] \quad (p_0^t M(\varepsilon))_j \geq \operatorname{val} M(0) \,.$

Definition (Functional form problem)

Return the maps

 $\varepsilon \mapsto \mathsf{val}M(\varepsilon)$ $\varepsilon \mapsto p^*(\varepsilon)$,

for $\varepsilon \in [0, \varepsilon_0]$.

Note. They are rational functions.

An error-free LP is the following optimization problem.

$$(P_0) \begin{cases} \min_x & c_0^t x \\ s.t. & A_0 x \leq b_0 \\ & x \geq 0 \,, \end{cases}$$

An LP with errors considers polynomials $A(\varepsilon), b(\varepsilon), c(\varepsilon)$.

Definition (Weak robustness)

Determine if there exists $\varepsilon_0 > 0$ such that, for all $\varepsilon \in [0, \varepsilon_0]$, (P_{ε}) is feasible and bounded.

Introduction Main ide Results Model Details Example

LPs with errors II

Definition (Strong robustness)

Determine if there exists $\varepsilon_0 > 0$ and a vector x_0^* such that, for all $\varepsilon \in [0, \varepsilon_0]$, x_0^* is also a solution of (P_{ε}) .

Definition (Functional form)

Let $(P_{\varepsilon})_{\varepsilon \geq 0}$ be weakly robust. The *functional form* is given by

 $\varepsilon \mapsto \operatorname{val}(P_{\varepsilon})$ $\varepsilon \mapsto x^*(\varepsilon).$

Note. They are rational functions.

Introduction	Main idea
Results	Model
Details	Examples
Polynomial matrix game	

Consider $\varepsilon > 0$.

$$M(arepsilon) = egin{pmatrix} 1 & -1 \ -1 & 1 \end{pmatrix} + egin{pmatrix} 1 & -3 \ 0 & 2 \end{pmatrix} arepsilon \,.$$

The optimal strategy is given by, for $\varepsilon < 1/2\text{,}$

$$p_{arepsilon} = \left(rac{1+arepsilon}{2+3arepsilon},rac{1+2arepsilon}{2+3arepsilon}
ight)^t$$

Therefore,

$$\mathsf{val}M(arepsilon) = rac{arepsilon^2}{2+3arepsilon}$$

٠

Polynomial matrix game, negative direction

Consider $\varepsilon > 0$.

$$M(arepsilon) = egin{pmatrix} 1 & -1 \ -1 & 1 \end{pmatrix} + egin{pmatrix} -1 & 3 \ 0 & -2 \end{pmatrix} arepsilon \,.$$

The optimal strategy is given by, for $\varepsilon < 1/2\text{,}$

$$p_{arepsilon} = \left(rac{1+arepsilon}{2+3arepsilon},rac{1+2arepsilon}{2+3arepsilon}
ight)^t$$

Therefore,

$$\mathsf{val}M(arepsilon) = rac{arepsilon^2}{2+3arepsilon}$$
 .

Introduction Main idea Results Model Details **Examples**

LP with errors: not weakly robust

$$(P_{\varepsilon}) \begin{cases} \min_{x} & x \\ s.t. & x \leq -\varepsilon \\ & -x \leq -\varepsilon \end{cases}.$$

It is not weakly robust, therefore not strongly robust and there is no functional form.

Introduction	Main idea
Results	Model
Details	Examples

LP with errors: strongly robust

$$(P_{\varepsilon}) \begin{cases} \max_{x,y} & x+y \\ s.t. & x \leq 0 \\ y+\varepsilon x & \leq 0. \end{cases}$$

It is weakly robust and strongly robust. Therefore, the functional form is:

$$\operatorname{val}(P_arepsilon)\equiv 0 \ (x,y)^*(arepsilon)\equiv (0,0) \, .$$

Previous results Our results

Derivative of the value function [Mills 1956]

Define

$$D \mathsf{val} M(0^+) \coloneqq \lim_{arepsilon o 0^+} rac{\mathsf{val} M(arepsilon) - \mathsf{val} M(0)}{arepsilon} \,.$$

Results.

- Characterization of $DvalM(0^+)$.
- Poly-time) algorithm for computing it.

Similar results are given for LPs with errors, adding feseability and boundedness conditions.

Observations.

- Mills (naturally) only cares about linear perturbations.
- This result does not solve in any way the value-positivity problems.

Introduction Results Details

Previous results

Reduction

Lemma (Reduction from LP with error to polynomial matrix games)

There is a polynomial-time reduction from robustness problems to the respective value-positivity problem, and it preserves the degree of the error terms. Introduction Results Details

Previous result Our results

Algorithms

Lemma (Poly-time algorithms)

There are certifying polynomial-time algorithms for value-positivity, uniform value-positivity and functional form problems of polynomial matrix games.

This extends the work of [Mills 1956].

LP reduction

Follows the work of [Adler 2013], which finishes the work of [Dantzig 1951]. Works for algebraic parameters.

ntroduction Techniques Results Comments Details Open quest

Poly-time for value-positivity

Based on ideas of [Oliu-Barton 2020], which reuses results of [Shapley and Snow 1952].

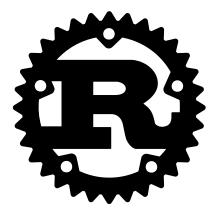
Lemma

Let M be a matrix game. There exists a square submatrix M such that $1^t co(M) 1 \neq 0$ and

$$\mathsf{val} M = \frac{\det M}{\mathbbm{1}^t co(\dot{M}) \mathbbm{1}} \,,$$

where $co(\dot{M})$ is the co-matrix of \dot{M} and 1 is the vector of ones.

Introduction	Techniques
Results	Comments
Details	Open questions



Introduction	Techniques
Results	Comments
Details	Open questions

Arbitrary high degree for linear matrix games. The value function of a linear matrix game is a rational function

$$\operatorname{val} M(arepsilon) = rac{R_1(arepsilon)}{R_2(arepsilon)}\,,$$

where R_1 , R_2 are polynomials of degree at most min(#rows, #columns). Is there a example where this inequality is sharp?

Your proposal?